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Abstract Snowmelt is an important driver of regional river flow, and warm 
season (April–August) river flows are linked to the previous cold season’s 
(November–March) precipitation. Canonical correlation analysis (CCA) is 
applied between the cold season regional climate (November–March zonal 
winds and precipitation) and the subsequent warm season river discharge 
(April–August station river flows) for 1950–1985. The NCEP/NCAR re-
analysis is used for precipitation and winds, and 24 stations in the mountains 
of eastern Uzbekistan and Tajikistan are used for river flow data. The extracted 
cold season precipitation and wind patterns have regional scales and are 
adequately captured by the NCEP/NCAR reanalysis. Average cross-validated 
skill correlation is 0.43 for the river flows, with 10 stations correlated greater 
than 0.5. As the re-analysis data are updated in real time, this scheme can 
make operational forecasts. The regional variability is also related to tropical 
Pacific sea-surface temperatures, which may enable forecasts at longer leads. 
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INTRODUCTION 
 
Central Asia is a semiarid region, with precipitation primarily occurring during the 
cold season (November–April), and falling as snow in the high mountains of the 
region. As a result of this seasonality, snowmelt is a primary driver of the regional 
river flows which tend to peak between April and August. There is considerable year-
to-year variability in regional precipitation, including a recent severe drought (Barlow 
et al., 2002), and due to water scarcity, infrastructure problems, and large irrigation 
demands, there is high societal vulnerability to the variability. Global warming is also 
a concern, as temperature increases have been associated with notable decreases in the 
local glaciers (e.g. Aizen et al., 1997) and circulation changes associated with the 
warming trend in tropical sea-surface temperatures (SSTs) appear to be related to the 
recent drought (Barlow et al., 2002; Hoerling & Kumar, 2003). The regional precipi-
tation is also related to large-scale, predictable climate variability (Barlow et al., 2002; 
Tippett et al., 2003). These teleconnections are used as a basis for operational 
predictions of cold season precipitation in the region (iri.columbia.edu/climate/ 
forecast/cswasia/index.html), with demonstrated skill (Tippett et al., 2004). 
 The seasonal lag between the accumulation of snow and its subsequent melting 
suggests an additional forecasting tool for warm season hydrological variables. An  
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Fig. 1 Location of the river flow stations. More information about the stations is given 
in Table 1. 

 
 
accurate estimate of snow amount just prior to the beginning of the spring melt would 
provide a prediction of the subsequent river flows. Unfortunately, a sufficiently 
accurate estimate of snow or, more specifically, snow water equivalent, is very 
difficult to obtain, particularly in real time. However, as most precipitation in the 
mountains falls as snow, accumulated precipitation may provide a sufficient proxy. 
This approach has been explored by Schär et al. (2004), who looked at prediction of 
the Syr Darya and Amu Darya basin discharges from accumulated cold season 
precipitation averaged over the basin drainage area. Since well-sampled precipitation 
observations are also difficult to obtain for the region, Schär et al. used the model-
based precipitation product from the ECMWF reanalysis, with good results for the Syr 
Darya. They note that, while the ECMWF reanalysis also suffers from the sparseness 
of local observations, storms arriving in the region are very well sampled just upstream 
in Europe and the local distribution of precipitation is strongly controlled by the 
orography. These factors are included in dynamically-based re-analyses, such as those 
of the ECMWF and NCEP/NCAR, and can provide information even in regions with 
few local observations. 
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Table 1 CCA results for river flow station data, shown as correlation. Cross-validated correlations are 
also shown. For station numbers refer to Fig. 1. An asterisk denotes statistical significance at the 99% or 
higher level, based on Monte Carlo analysis. Note that the negative correlations of river flow shown 
here correspond to negative precipitation anomalies in Fig. 2; that is, the river flow and precipitation 
anomalies have the same sign, as expected. 

Station name River name Drainage 
area 
(km2) 

Elevation 
(m) 

Apr–Aug frac-
tion of annual 
river flow 

CCA 
correlation 

Cross-
validated 
correlation 

1. Gava Gavasay 657 1063 0.83 *–0.85 *–0.61 
2. Khujakent Ugam 869 741 0.72 *–0.91 *–0.59 
3. Shuchand Murgab 24 700 90 0.58 *–0.48   –0.08 
4. Barchadiv Murgab 16 700 2510 0.40   –0.26   +0.05 
5. Khorog Gunt 13 700 2070 0.73 *–0.69 *–0.43 
6. Alibegi Khanaka 362 1004 0.75 *–0.61 *–0.44 
7. Mouth of  Lyangar 335 3165 0.63   –0.25   +0.07 
8. Dashnabad Obizarang 330 768 0.75 *–0.58 *–0.38 
9. Pinen Pasrut 340 1770 0.66 *–0.85 *–0.54 
10. Post-Sangikar Sangikar 291 1279 0.77 *–0.87 *–0.71 
11. Mouth Sarytag 537 2195 0.81 *–0.76 *–0.49 
12. Khabost Shakhdara 4 180 4096 0.74 *–0.76 *–0.39 
13. Takob Tuykutal 140 1473 0.74 *–0.63 *–0.49 
14. Garm Vakhsh 20 000 1300 0.69 *–0.65 *–0.40 
15. Dagana Varzob 1 270 969 0.77 *–0.88 *–0.55 
16. Karboztonak Yakhsu 1 440 982 0.75 *–0.68   –0.30 
17. Khozar-Nova Akdarya 845 971 0.76 *–0.86 *–0.57 
18. Dzhauz Dzhindydarya 152 6 0.54 *–0.61 *–0.46 
19. Chirakchi Kashkadarya 4 970 510 0.54 *–0.79 *–0.52 
20. Karatikon Kashkadarya 7 900 411 0.66 *–0.86 *–0.58 
21. Varganza Kashkadarya 511 818 0.57 *–0.83 *–0.52 
22. Bekabad Syr Darya 142 000 292 0.83 *–0.61 *–0.43 
23. Tatar Yakkabag 

darya 
504 1183 0.82 *–0.83 *–0.55 

24. Dupuli Zeravshan 10 200 1041 0.74 *–0.75 *–0.48 
 
 
 The importance of regional-scale climate patterns in the precipitation variability, 
as shown by Barlow et al. (2002) and Tippett et al. (2003), suggests a complementary 
approach: using the relationship between the river flows and the regional-scale 
precipitation and wind fields (as opposed to only considering the precipitation local to 
the basin). Consideration of the regional-scale and multiple variables includes more 
data, which may further alleviate some of the problems with sparsely observed local 
data. Accordingly, we apply the canonical correlation analysis (CCA) approach as in 
Tippett et al. (2003) to extract the joint patterns of variability between regional winds 
and precipitation during November–March (Nov–Mar) and river discharge station data 
during April–August (Apr–Aug). Because of the choice of non-overlapping seasons, 
the CCA can also be used to make forecasts: once the Nov–Mar data are available 
(generally by 5 April), the Apr–Aug average river flows—the main flow season—can 
be forecast. 
 Here we focus on eastern Uzbekistan and Tajikistan, where there are 24 river 
discharge stations (Fig. 1) with near-continuous monthly reports from 1950–1985. 
Based on a number of considerations, the data quality appears adequate for the current 
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analysis; this is discussed in the next section. The NCEP/NCAR re-analysis is used for 
both winds and precipitation; using observed precipitation yields better results for 
earlier periods when regional coverage was more comprehensive but the re-analysis 
has the advantage of being operationally updated in a consistent fashion. 
 
 
DATA 
 
The river flow data was obtained from the National Center for Atmospheric Research 
(NCAR) dataset ds553.2. Twenty-four stations are considered, with less than 7% 
missing monthly data for any station (11 stations have no missing data) for Apr–Aug, 
1950–1985. The station names, rivers, basin areas, and elevations are given in Table 1 
and the locations are shown in Fig. 1. Observational precipitation was obtained from 
the extended New et al. (2000) gridded data. Model-based precipitation and upper-level 
zonal wind were obtained from the NCEP/NCAR reanalysis (Kalnay et al., 1996).   
 The general fidelity of the re-analysis variables in the region has been shown by 
Tippett et al. (2003). The quality of the river flow data has been evaluated with respect 
to physical consistency and the results of independent analysis. The primary relation-
ship present in the river flow data, as shown in the next section, is with the cold season 
precipitation, reflecting the fundamental physical process of snowmelt. The patterns of 
the cold season precipitation extracted by CCA with the river flow data are similar to 
previous analysis of regional precipitation (Tippett et al., 2003). The importance of 
cold season precipitation to basin discharge in the region has been demonstrated by 
Schär et al. (2004) in a study that included post-1985 data and explicitly corrected for 
human influence. The physical consistency of the derived relationships and the 
agreement with independent analyses suggest that the data quality of the flow rates 
used here is acceptable. 
 
 
RESULTS   
 
CCA is applied between gridded regional Nov–Mar climate (200hPa zonal wind and 
precipitation) and the subsequent Apr–Aug river flows (24 river discharge stations) for 
1950–1985. The river flow data are normalized by their standard deviation, so that the 
results will not be dominated by a few large rivers. The resulting patterns in zonal 
wind and precipitation are shown in Fig. 2 and the resulting pattern in river flows is 
given in terms of station correlations in Table 1. Note the regional scales of the climate 
variables and the very high correlations obtained for the majority of the stations, 
despite wide ranges in the size of the drainage basins and elevations of the rivers. The 
highest correlations are spread throughout the region and are not simply the most 
downstream stations with the largest drainage basins. The two easternmost stations in 
the region (stations 4 and 7 in Fig. 1(b)) do have low correlations. These stations have 
later peak flows than the others and need to be considered separately. To verify that the 
re-analysis precipitation, which is a product of the underlying atmospheric model and 
not directly constrained by observations, is contributing to a physical signal, the CCA 
time series was correlated to gridded observed precipitation (not shown); there is a 
good correspondence.   
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Fig. 2 CCA results: (a) re-analysis 200 hPa zonal wind, (b) re-analysis model 
precipitation, and (c) time series. In (c) the NINO4 index is also shown, indicated by a 
thin dotted line. 

 
 
 The variability captured by the CCA reflects the dominant local pattern of 
variability. Correlations to a simple box average of observed precipitation (65°–73°E, 
37°–42°N) yield patterns very similar to those seen in Fig. 2, as do correlations to an 
average of all the normalized river flows. 
 There is considerable similarity between the patterns obtained in the current CCA 
analysis and those obtained from CCA between cold season winds and cold season 
precipitation in Tippett et al. (2003), although the maximum precipitation anomalies in 
the current analysis are located about 2° further northward and have greater westward 
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extent. Decreased precipitation is associated with a reduction in jet-level winds, and 
has the largest changes along the windward slopes of the Pamir and Tien Shan ranges. 
Correlations to Pacific SSTs (not shown) are similar to those in Barlow et al. (2002) 
and Tippett et al. (2003), with a pattern similar to El Niño but with more emphasis on 
the central and western Pacific. The NINO4 time series, which is an average of tropical 
SSTs in the central Pacific, is also shown in Fig. 2(c) and is correlated with the CCA 
time series at –0.59. 
 The CCA may also be used for forecasting by projecting the precipitation and 
wind patterns onto the observed precipitation and wind anomalies for a given cold 
season. This magnitude multiplied by the pattern in river flows yields a river flow 
forecast for the subsequent warm season. To provide a robust estimate of forecast skill, 
a cross-validation is performed: the patterns are calculated leaving one year out of the 
data, then the prediction is made for that year; as all years are sequentially left out and 
forecast for, a skill is accumulated. The cross-validated skill—the skill likely to be 
obtained with operational forecasting—is shown in the last column of Table 1. Note 
that the average cross-validated skill is still above 0.5 for 10 of the 24 stations, and one 
station has a cross-validated correlation of 0.71 (50% of the variance). As NCEP/NCAR 
re-analysis data are updated operationally (about 5 days past the end of the month), the 
current approach can be used for operational forecasting. 
 
 
SUMMARY AND DISCUSSION 
 
The CCA shows that there is a close relationship between warm season river flows and 
the regional climate during the previous cold season—and that the operationally 
available NCEP/NCAR data are sufficient to capture this relationship. While this 
approach is not optimized for a particular station, it shows generally high correlations 
for most of the stations, despite the wide range of basin sizes, elevations, and 
upstream/downstream relationships present. This suggests that the results may be 
generally applicable to other river flow stations under the influence of the regional 
precipitation pattern. There are several additional stations in the region, which had 
fewer reports and so were not included in the CCA analysis but provide a useful 
validation; some of these stations also are highly correlated (discussed further below). 
 This study is limited by the lack of recent data, particularly given the dissolution of 
the Soviet Union, which changed water usage in the region. However, the regional 
patterns of cold season precipitation variability remain active and stable in the post-
1985 periods (Tippett et al., 2003), and basin-averaged cold season precipitation 
continues to be a good predictor of local river flows in the recent period (Schär et al., 
2004), so the CCA approach may be expected to have continued applicability. Indeed, 
preliminary comparisons with river flow data from the post-1985 period suggest that 
the regional CCA approach remains quite successful; we are in the process of 
collecting more data and validating this. 
 The CCA can also be employed to make predictions, and cross-validated 
correlations remain considerable, suggesting the technique, which is already in an 
operationally-useable format, may have practical utility. This regionally-based meth-
odology appears to be a complementary approach with respect to the basin-
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accumulated precipitation used by Schär et al. (2004). The latter produced high 
correlation for the Syr Darya but low correlation for the Amu Darya. The Syr Darya at 
Bekabad (40.22°N, 69.27°E) is included in the present CCA. For 1950–1985, the 
correlation is 0.61 and the cross-validated correlation is 0.52; these are moderate 
correlations but not as high as achieved using basin-accumulated precipitation. The 
Amu Darya is not included in the present CCA, although some of its tributaries are, 
but it is present in the NCAR data with 25 years of data (1950–1974) at the Chatly 
(42.28°N, 59.7°E) station. Correlation with the CCA analysis is 0.83; cross-validated 
correlation is 0.73, considerably higher than is obtained using basin accumulations.   
 It appears that due to the precipitation seasonality favouring the cold season and 
the importance of snowmelt, regional river flows have good predictability even from 
the available data, and that advantage can be gained from both local and regional data. 
Moreover, the connection to tropical SSTs suggests the potential for even longer lead 
predictions, perhaps starting in the previous fall for the subsequent summer. In other 
areas of the world, such an approach has proven useful (Berri & Flamenco, 1999). 
Future research is planned to examine the seasonal predictability of central and 
southwest Asian river flows based on using different variables and combination of 
variables, as well as different domain sizes. 
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